Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Structural analysis and insight into novel MMP-13 inhibitors from natural chemiome as disease-modifying osteoarthritis drugs

Yang Xiang1, Yuanhui Li1, Zhirong Ling1, Yanzi Cheng2

1Department of Orthopaedics; 2Department of Intensive Care Unit, Zhuhai People's Hospital, Jinan University Affiliated Zhuhai Hospital, Zhuhai, Guangdong, China.

For correspondence:-  Yanzi Cheng   Email: CTyronehott@yahoo.com

Accepted: 22 October 2018        Published: 30 November 2018

Citation: Xiang Y, Li Y, Ling Z, Cheng Y. Structural analysis and insight into novel MMP-13 inhibitors from natural chemiome as disease-modifying osteoarthritis drugs. Trop J Pharm Res 2018; 17(11):2255-2262 doi: 10.4314/tjpr.v17i11.21

© 2018 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To identify natural chemiome that inhibits matrix-metalloproteinases (MMPs) with a view to discovering novel disease-modifying osteoarthritis drugs (DMOADs).
Methods: Computer-aided drug design (CADD) with virtual screening, ADME/Tox, molecular docking, molecular dynamics simulation, and MM-PBSA calculations were used in search of novel natural compounds that inhibit MMPs.
Results: From more than fifty thousand compounds, a single lead compound (IBS ID: 77312) was shortlisted using bias based on binding energy and drug-likeness. This lead compound synergistically bound to the S1 domain of MMP-13 protein through five hydrogen bonds. The interactions became stable within 100-nanosecond molecular dynamics simulation run. The in vitro data for the lead compound showed that its minimal non-lethal dose increased collagen content but decreased aggrecan level in chondrocytes.
Conclusion: This study has identified a natural lead compound that may pave the way for a novel DMOAD of natural origin against OA.

Keywords: Osteoarthritis, MMP-13, Natural chemiome, Disease-modifying osteoarthritis drug, Molecular docking

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates